131 research outputs found

    Melanosomes at a glance

    Get PDF
    Melanosomes, the pigment granules that provide tissues with colour and photoprotection, are the cellular site of synthesis, storage and transport of melanin pigments. They are synthesised in mammalian skin melanocytes, in choroidal melanocytes and retinal pigment epithelial (RPE) cells in the eye, and in melanophores (a class of pigment-containing cells) in lower vertebrates. The precise fate and functions of melanosomes vary according to cell type – epidermal melanocytes supply neighbouring keratinocytes with melanosomes, which results in the pigmentation of skin and hair, whereas pigment granules are retained intracellularly in RPE cells and choroidal melanocytes. In lower vertebrates, the reversible aggregation and dispersion of melanosomes throughout the melanophore enables rapid colour change and adaptation to the environment

    Etiology and management of pediatric intestinal failure: Focus on the non-digestive causes

    Get PDF
    Background: Intestinal failure (IF) is defined as reduction in functioning gut mass below the minimal amount necessary for adequate digestion and absorption. In most cases, IF results from intrinsic diseases of the gastrointestinal tract (digestive IF) (DIF); few cases arise from digestive vascular components, gut annexed (liver and pancreas) and extra-digestive organs or from systemic diseases (non-digestive IF) (NDIF). The present review revised etiology and treatments of DIF and NDIF, with special focus on the pathophysiological mechanisms, whereby NDIF develops. Methods: We performed a comprehensive search of published literature from January 2010 to the present by selecting the following search strings: “intestinal failure” OR “home parenteral nutrition” OR “short bowel syndrome” OR “chronic pseudo-obstruction” OR “chronic intestinal pseudo-obstruction” OR “autoimmune enteropathy” OR “long-term parenteral nutrition”. Results: We collected overall 1656 patients with well-documented etiology of IF: 1419 with DIF (86%) and 237 with NDIF (14%), 55% males and 45% females. Among DIF cases, 66% had SBS and among NDIF cases 90% had malabsorption/maldigestion. Conclusions: The improved availability of diagnostic and therapeutic tools has increased prevalence and life expectancy of rare and severe diseases responsible for IF. The present review greatly expands the spectrum of knowledge on the pathophysiological mechanisms through which the diseases not strictly affecting the intestine can cause IF. In view of the rarity of the majority of pediatric IF diseases, the development of IF Registries is strongly required; in fact, through information flow within the network, the Registries could improve IF knowledge and management

    Morbid obesity in a young woman affected by advanced chronic kidney disease: an exceptional case report. Does a high dose of essential amino acids play a key role in therapeutic success?

    Get PDF
    A 38-year-old woman, obese (219\u2009kg), diabetic, hypertensive, chronic kidney disease (CKD) stage 4, with low plasma albumin level (2.9\u2009g\u2009dl(-1)) and marked proteinuria (22\u2009g per day) was studied. Given the advanced-stage CKD with nephrotic proteinuria, we supplemented low-protein diet with high doses of a tailored essential amino acid mixture (AAs: 44\u2009g per day) to improve weight reduction in the patient. After 20 months of conservative therapy, the patient lost 43\u2009kg; despite two episodes of infection, albumin plasma levels increased up to 3.7\u2009g per day. After a further 20 months of dialysis, the patient maintained a diet of 1800 kcal supplemented with 32\u2009g of AAs and lost 47\u2009kg, whereas both albumin (3.89\ub10.12\u2009g\u2009dl(-1)) and C reactive protein returned to normal. During the follow-up period, anemia improved, erythropoietin was thus discontinued and insulin requirement decreased to 105 IU. This therapeutic option may be beneficial in advanced CKD patients with obesity and diabetes resulting from malnutrition

    The medial septum is insulin resistant in the AD presymptomatic phase: rescue by nerve growth factor-driven IRS1 activation.

    Get PDF
    Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3 7Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3 7Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance

    NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer's disease

    Get PDF
    NGF has been implicated in forebrain neuroprotection from amyloidogenesis and Alzheimer's disease (AD). However, the underlying molecular mechanisms are still poorly understood. Here, we investigated the role of NGF signalling in the metabolism of amyloid precursor protein (APP) in forebrain neurons using primary cultures of septal neurons and acute septo-hippocampal brain slices. In this study, we show that NGF controls the basal level of APP phosphorylation at Thr668 (T668) by downregulating the activity of the Ser/Thr kinase JNK(p54) through the Tyr kinase signalling adaptor SH2-containing sequence C (ShcC). We also found that the specific NGF receptor, Tyr kinase A (TrkA), which is known to bind to APP, fails to interact with the fraction of APP molecules phosphorylated at T668 (APPpT668). Accordingly, the amount of TrkA bound to APP is significantly reduced in the hippocampus of ShcC KO mice and of patients with AD in which elevated APPpT668 levels are detected. NGF promotes TrkA binding to APP and APP trafficking to the Golgi, where APP\u2013BACE interaction is hindered, finally resulting in reduced generation of sAPP\u3b2, CTF\u3b2 and amyloid-beta (1-42). These results demonstrate that NGF signalling directly controls basal APP phosphorylation, subcellular localization and BACE cleavage, and pave the way for novel approaches specifically targeting ShcC signalling and/or the APP\u2013TrkA interaction in AD therapy

    Non una donna in politica, ma una donna politica: Women’s Political Language in an Italian Context

    Get PDF
    This chapter focuses on the metaphorical content of Italian women politicians’ speech to investigate if particularly ‘feminine’ language traits (see Jesperson 1922: 237–54) can be identified, or whether, as the driving hypothesis of this study posits, it is ministerial remit that conditions the use of a politician’s language more than any other single factor. This hypothesis is tested by examining a corpus of speeches, press interviews and press releases of five women ministers in the Prodi-led administration in Italy, covering the period June 2006 to May 2007

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe
    • 

    corecore